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In this paper, we introduce the definitions of Eulerian pair and Hermite-Biehler pair. 
We also characterize a duality relation between Eulerian recurrences and Eulerian 
recurrence systems. This generalizes and unifies Hermite-Biehler decompositions of several 
enumerative polynomials, including up-down run polynomials for symmetric groups, 
alternating run polynomials for hyperoctahedral groups, flag descent polynomials for 
hyperoctahedral groups and flag ascent-plateau polynomials for Stirling permutations. We 
derive some properties of associated polynomials. In particular, we prove the alternatingly 
increasing property and the interlacing property of the ascent-plateau and left ascent-
plateau polynomials for Stirling permutations.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Let An(x) and Bn(x) be the Eulerian polynomials of types A and B , respectively. For n � 1, they satisfy the following 
recurrence relations:

An(x) = (nx + 1 − x)An−1(x) + x(1 − x)
d

dx
An−1(x),

Bn(x) = (2nx + 1 − x)Bn−1(x) + 2x(1 − x)
d

dx
Bn−1(x),

with A0(x) = B0(x) = 1 (see [11,12,37] for instance). In recent years, there has been much work on the generalizations 
of Eulerian recurrences, see [4,20,36] and references therein. For example, Salas and Villaseñor [4] classified the partial 
differential equations that are satisfied by the generating function

f (x, y) =
∑

n,k�0

∣∣∣∣nk
∣∣∣∣xk yn

n! ,

where the numbers 
∣∣n
k

∣∣ satisfy the recurrence relation
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∣∣∣∣nk
∣∣∣∣ = (αn + βk + γ )

∣∣∣∣n − 1

k − 1

∣∣∣∣ + (α′n + β ′k + γ ′)
∣∣∣∣n − 1

k

∣∣∣∣,
with 

∣∣0
0

∣∣ = 1 and 
∣∣n
k

∣∣ = 0 when n < 0 or k < 0. Very recently, Hwang, Chern and Duh [20] considered the general Eulerian 
recurrence:

Pn(x) = (α(x)n + γ (x))Pn−1(x) + β(x)(1 − x)
d

dx
Pn−1(x) (1)

for n � 1, where P0(x), α(x), β(x) and γ (x) are given functions of x. They studied the limiting distribution of the coefficients 
of Pn(x) for large n when the coefficients are nonnegative. In particular, Hwang, Chern and Duh [20, Section 9.3] discussed 
the limiting distribution of the coefficients polynomials that satisfy Eulerian recurrence systems.

We now introduce a new definition.

Definition 1. Let {En(x)}n�0 and {O n(x)}n�0 be two sequences of polynomials. We say that the ordered pair of polynomi-
als (En(x), O n(x)) is an Eulerian pair if deg En(x) � deg O n(x) and the polynomials En(x) and O n(x) satisfy the Eulerian 
recurrence system:{

En+1(x) = pn(x)En(x) + qn(x) d
dx En(x) + rn(x)O n(x),

O n+1(x) = un(x)O n(x) + vn(x) d
dx O n(x) + wn(x)En(x),

(2)

where E0(x), O 0(x), pn(x), qn(x), rn(x), un(x), vn(x), wn(x) are given polynomials.

Following [17], we say that a polynomial p(x) ∈ R[x] is standard if its leading coefficient is positive. Suppose that 
p(x), q(x) ∈R[x] both have only real zeros, that those of p(x) are ξ1 � · · · � ξn , and that those of q(x) are θ1 � · · · � θm . We 
say that p(x) interlaces q(x) if deg q(x) = 1 + deg p(x) and the zeros of p(x) and q(x) satisfy

θ1 � ξ1 � θ2 � · · · � ξn � θn+1.

We say that p(x) alternates left of q(x) if deg p(x) = deg q(x) and the zeros of them satisfy

ξ1 � θ1 � ξ2 � · · ·� ξn � θn.

We use the notation p(x) ≺int q(x) for “p(x) interlaces q(x)”, p(x) ≺alt q(x) for “p(x) alternates left of q(x)”, and p(x) ≺ q(x)
for either “p(x) ≺int q(x)” or “p(x) ≺alt q(x)”. For notational convenience, let a ≺ bx + c for any real constants a, b, c.

Let C[x] denote the set of all polynomials in x with complex coefficients. A polynomial p(x) ∈ C[x] is Hurwitz stable if 
every zero of p(x) is in the open left half plane, and p(x) is weakly Hurwitz stable if every zero of p(x) is in the closed left 
half of the complex plane. This concept has been extended to multivariate polynomials, see [7–9,34]. Let C[x1, x2, . . . , xn]
denote the set of all polynomials in x1, x2, . . . , xn with complex coefficients. We say that p(x1, x2, . . . , xn) ∈C[x1, x2, . . . , xn]
is Hurwitz stable (resp. weakly Hurwitz stable) if p(x1, x2, . . . , xn) �= 0 for all (x1, x2, . . . , xn) ∈Cn with Re xi � 0 (resp. Re xi >

0), where Re xi denote the real part of xi .
Let f (x) = ∑n

i=0 f i xi ∈R[x]. In this paper, we always assume that

f E(x) =
�n/2�∑
k=0

f2kxk, f O (x) =
�(n−1)/2�∑

k=0

f2k+1xk;

f e(x) =
�n/2�∑
k=0

f2kx2k, f o(x) =
�(n−1)/2�∑

k=0

f2k+1x2k+1.

Then f (x) = f E (x2) + xf O (x2). We call this decomposition the Hermite-Biehler decomposition of f (x), since the Hermite-
Biehler theorem [16, p. 228] gives a connection between the Hurwitz stability of f (x) and the interlacing property of f E (x)
and f O (x). The following version of the Hermite-Biehler theorem will be used in our discussion.

Hermite-Biehler Theorem ([17, Theorem 3]). Let f (x) = f E (x2) + xf O (x2) be a standard polynomial with real coefficients. Then 
f (x) is weakly Hurwitz stable if and only if both f E(x) and f O (x) are standard, have only nonpositive zeros, and f O (x) ≺ f E(x). 
Moreover, f (x) is Hurwitz stable if and only if f (x) is weakly Hurwitz stable, f (0) �= 0 and gcd( f E (x), f O (x)) = 1.

Now we introduce another definition.

Definition 2. We say that the ordered pair of polynomials (G(x), H(x)) is a Hermite-Biehler pair if G(x) and H(x) have the 
following decompositions:
2
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{
G(x) = G E(x2) + xG O (x2),

H(x) = G E(x) + xδG O (x),
(3)

where δ = 0 or δ = 1.

In this paper, we consider combinatorial aspects of the Eulerian pairs and Hermite-Biehler pairs. In Section 2, we pro-
vide a connection between Eulerian pairs and Hermite-Biehler decompositions. In Section 3, we consider Eulerian pairs 
and Hermite-Biehler pairs associated with the up-down run polynomials for symmetric groups. In Section 4, we consider 
Eulerian pairs associated with the alternating run polynomials for hyperoctahedral groups. In Section 5, we consider Eule-
rian pairs and Hermite-Biehler pairs associated with the flag descent polynomials for hyperoctahedral groups. In Section 6, 
we first consider Eulerian pairs and Hermite-Biehler pairs associated with the flag ascent-plateau polynomials for Stirling 
permutations, we then show the alternatingly increasing property and interlacing property of the ascent-plateau and left 
ascent-plateau polynomials for Stirling permutations. The main results of this paper are Theorems 3, 7, 11, 14, 17, 19.

2. Relationship between Eulerian pairs and Hermite-Biehler decompositions

As an extension of (1), we define a sequence of polynomials {Fn(x)}n�0 by using the following general Eulerian recur-
rence:

Fn+1(x) = αn(x)Fn(x) + βn(x)
d

dx
Fn(x), (4)

where F0(x), αn(x) and βn(x) are given polynomials. We now present a fundamental result.

Theorem 3. Let (En(x), O n(x)) be an Eulerian pair that satisfies the Eulerian recurrence system (2), and let Fn(x) be the polynomial 
defined by the recurrence (4). Then the polynomial Fn(x) has the Hermite-Biehler decomposition Fn(x) = En(x2) + xO n(x2) if and 
only if the following conditions hold:

un(x) = pn(x) + 1

2x
qn(x), vn(x) = qn(x), wn(x) = 1

x
rn(x),

αn(x) = pn(x2) + 1

x
rn(x2), βn(x) = 1

2x
qn(x2), βe

n(x) = 0.

Proof. By using Fn(x) = En(x2) + xO n(x2), we obtain

d

dx
Fn(x) = 2x

d

dx
En(x2) + O n(x2) + 2x2 d

dx
O n(x2).

Then it follows from (4) that

Fn+1(x) = αn(x)
(

En(x2) + xO n(x2)
)

+

βn(x)

(
2x

d

dx
En(x2) + O n(x2) + 2x2 d

dx
O n(x2)

)
.

Comparing this with the expression Fn+1(x) = En+1(x2) + xO n+1(x2), we obtain

En+1(x2) = αe
n(x)En(x2) + xαo

n(x)O n(x2)+
βe

n(x)

(
O n(x2) + 2x2 d

dx
O n(x2)

)
+ 2xβo

n (x)
d

dx
En(x2),

O n+1(x2) = 1

x
αo

n(x)En(x2) + αe
n(x)O n(x2)+

1

x
βo

n (x)

(
O n(x2) + 2x2 d

dx
O n(x2)

)
+ 2βe

n(x)
d

dx
En(x2).

Since (2) holds, then βe
n(x) = 0. Hence{

En+1(x2) = αe
n(x)En(x2) + 2xβo

n (x) d
dx En(x2) + xαo

n(x)O n(x2),

O n+1(x2) = (
αe

n(x) + 1
x βo

n (x)
)

O n(x2) + 2xβo
n (x) d

dx O n(x2) + 1
x α

o
n(x)En(x2).

(5)

By comparing (2) with (5), we immediately get the following relations:
3
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pn(x2) = αe
n(x), qn(x2) = 2xβo

n (x), rn(x2) = xαo
n(x),

un(x2) = αe
n(x) + 1

x
βo

n (x), vn(x2) = 2xβo
n (x), wn(x2) = 1

x
αo

n(x),

which yield the desired result. Conversely, when βe
n(x) = 0, one can get the recurrence system (2) by using the following 

relations:

xαn(x) = xpn(x2) + rn(x2), 2xβn(x) = qn(x2). (6)

This completes the proof. �
3. Up-down run polynomials for symmetric groups

Let Sn be the set of all permutations of [n] = {1, 2, . . . , n} and let π = π(1)π(2) · · ·π(n) ∈ Sn . An alternating run of π
is a maximal consecutive subsequence that is increasing or decreasing. The up-down runs of π are the alternating runs of 
π endowed with a 0 in the front (see [14,28]). Let udrun (π) denote the number of up-down runs of π . The numbers of 
interior peaks, left peaks and valleys of π are respectively defined as follows:

ipk (π) = #{i ∈ [2,n − 1] : π(i − 1) < π(i) > π(i + 1)},
lpk (π) = #{i ∈ [n − 1] : π(i − 1) < π(i) > π(i + 1), π(0) = 0},
val (π) = #{i ∈ [2,n − 1] : π(i − 1) > π(i) < π(i + 1)}.

It is clear that udrun (π) = lpk (π) + val (π) + 1, see [37, Lemma 2.1].
Define

Wn(x) =
∑
π∈Sn

xipk (π), W n(x) =
∑
π∈Sn

xlpk (π).

Note that

lpk (π) =
{

ipk (π) + 1, if π(1) > π(2);
ipk (π), otherwise.

Then deg W n(x) � deg Wn(x). For n � 1, the polynomials W n(x) and Wn(x) satisfy the recurrence relations

W n+1(x) = (nx + 1)W n(x) + 2x(1 − x)
d

dx
W n(x),

Wn+1(x) = (nx − x + 2)Wn(x) + 2x(1 − x)
d

dx
Wn(x),

with the initial conditions W 1(x) = W1(x) = 1 (see [24,29]). Note that (W n(x), Wn(x)) is an Eulerian pair. Setting pn(x) =
nx + 1, qn(x) = 2x(1 − x) and rn(x) = 0, we get

pn(x) + 1

2x
qn(x) = nx − x + 2.

Then, by using Theorem 3, we can define

αn(x) = pn(x2) + 1

x
rn(x2) = nx2 + 1, βn(x) = 1

2x
qn(x2) = x(1 − x2).

So we recover the following result.

Proposition 4 ([24, Eq. (9)]). Let {Rn(x)}n�1 be a sequence of polynomials defined by the recurrence relation

Rn+1(x) = (nx2 + 1)Rn(x) + x(1 − x2)
d

dx
Rn(x), (7)

with R1(x) = 1 + x. Then Rn(x) = W n(x2) + xWn(x2).

Let RZ(I) the set of real-rooted polynomials all of whose zeros lie in the real interval I . According to [24, Theorem 6], 
we have Rn(x) ∈ RZ[−1, 0]. Combining the Hermite-Biehler theorem and Proposition 4, we obtain the following result.

Corollary 5. Both Wn(x) and W n(x) have only nonpositive zeros, and Wn(x) ≺ W n(x).
4
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The up-down run polynomials Tn(x) are defined by

Tn(x) =
∑
π∈Sn

xudrun (π).

The polynomials Tn(x) satisfy the recurrence relation

Tn+1(x) = x(nx + 1)Tn(x) + x
(

1 − x2
) d

dx
Tn(x), (8)

with the initial conditions T0(x) = 1 and T1(x) = x (see [25,33]). Comparing (7) with (8), it is routine to check that

Rn(x) = 1 + x

x
Tn(x). (9)

Set S+
n = {π ∈ Sn : π(n − 1) > π(n)} and S−

n = {π ∈ Sn : π(n − 1) < π(n)}. We define

T E
n (x) =

∑
π∈S+

n

xlpk (π), T O
n (x) =

∑
π∈S−

n

xlpk (π).

According to [37, Lemma 2.1], one has

lpk (π) =
⌊

udrun (π)

2

⌋
.

Therefore, the following result holds.

Proposition 6. For any n � 1, we have{
Tn(x) = T E

n (x2) + xT O
n (x2),

W n(x) = T E
n (x) + T O

n (x).

Thus (Tn(x), W n(x)) is a Hermite-Biehler pair.

From (8), we see that αn(x) = nx2 + x, βn(x) = x(1 − x2) and βe
n(x) = 0. Using (6), we obtain x(nx2 + x) = xpn(x2) + rn(x2)

and 2x2(1 − x2) = qn(x2). It follows from Theorem 3 that

pn(x) = nx, qn(x) = 2x(1 − x), rn(x) = x,

un(x) = nx + 1 − x = (n − 1)x + 1, vn(x) = 2x(1 − x), wn(x) = 1.

Recall that Rn(x) ∈ RZ[−1, 0] (see [24, Theorem 6]). Hence Tn(x) ∈ RZ[−1, 0]. Therefore, combining Theorem 3 and the 
Hermite-Biehler theorem, we obtain the main result of this section.

Theorem 7. For n � 1, the polynomials T E
n (x) and T O

n (x) satisfy the recurrence system{
T E

n+1(x) = nxT E
n (x) + 2x(1 − x) d

dx T E
n (x) + xT O

n (x),
T O

n+1(x) = ((n − 1)x + 1)T O
n (x) + 2x(1 − x) d

dx T O
n (x) + T E

n (x),
(10)

with the initial conditions T E
1 (x) = 0 and T O

1 (x) = 1. Thus the ordered pairs of polynomials (T E
n (x), T O

n (x)) are Eulerian pairs. More-
over, both T E

n (x) and T O
n (x) have only nonpositive zeros and T O

n (x) ≺ T E
n (x).

4. Alternating run polynomials for signed permutations

Let ±[n] = [n] ∪ {1, . . . , n}, where i = −i. Let S B
n be the hyperoctahedral group of rank n. Elements of S B

n are signed 
permutations σ of the set ±[n] such that σ(−i) = −σ(i) for all i. As usual, we can ignore the negative index of the σ and 
just write σ = σ(1)σ (2) · · ·σ(n). In this section, we always assume that signed permutations are prepended by 0. That is, 
we identify σ with the word σ(0)σ (1)σ (2) · · ·σ(n), where σ(0) = 0. The numbers of peaks and valleys of σ are respectively 
defined by

pk (σ ) = #{i ∈ [n − 1] : σ(i − 1) < σ(i) > σ(i + 1)},
val (σ ) = #{i ∈ [n − 1] : σ(i − 1) > σ(i) < σ(i + 1)}.

An alternating run of σ is defined as a maximal interval of consecutive elements on which the elements of σ are monotonic 
in the order n < · · · < 2 < 1 < 0 < 1 < 2 < · · · < n, see [13,35]. Let altrun (σ ) be the number of alternating runs of σ . For 
example, altrun (031245) = 4. It is clear that altrun (σ ) = pk (σ ) + val (σ ) + 1.
5
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Let C+
n = {σ ∈ S B

n : σ(1) > 0} be the set of up-signed permutations in S B
n . The alternating run polynomials for up-signed 

permutations are defined by

Cn(x) =
∑

σ∈C+
n

xaltrun (σ ).

It should be noted that if altrun (σ ) = k, then altrun (−σ) = k, where −σ = 0σ(1) σ (2) · · ·σ(n). Therefore, one has∑
σ∈SB

n

xaltrun (σ ) = 2Cn(x).

Zhao [35, Theorem 4.3.1] showed that the polynomials Cn(x) satisfy the recurrence relation

Cn+1(x) = (2nx2 + 3x − 1)Cn(x) + 2x
(

1 − x2
) d

dx
Cn(x), (11)

with the initial condition C1(x) = x. The peak and valley polynomials for up-signed permutations are respectively defined 
by

Un(x) =
∑

σ∈C+
n

xpk (σ ), Vn(x) =
∑

σ∈C+
n

xval (σ ).

According to [13, Corollary 7], they satisfy the following recurrence system:{
Un+1(x) = (2nx + 1)Un(x) + 4x(1 − x) d

dx Un(x) + xVn(x),

Vn+1(x) = (2nx − 2x + 3)Vn(x) + 4x(1 − x) d
dx Vn(x) + Un(x),

with U0(x) = 1 and V 0(x) = 0. Note that deg Un(x) � deg Vn(x). Thus (Un(x), Vn(x)) is an Eulerian pair. Put

pn(x) = 2nx + 1, qn(x) = 4x(1 − x), rn(x) = x,

un(x) = 2nx − 2x + 3, vn(x) = 4x(1 − x), wn(x) = 1.

It follows from (6) that

αn(x) = pn(x2) + 1

x
rn(x2) = 2nx2 + x + 1, βn(x) = 1

2x
qn(x2) = 2x(1 − x2).

Let {Ĉn(x)}n�0 be the sequence of polynomials defined by the recurrence relation

Ĉn+1(x) = (2nx2 + x + 1)̂Cn(x) + 2x(1 − x2)
d

dx
Ĉn(x), (12)

with Ĉ0(x) = 1. By comparing (11) with (12), it is routine to verify that

Ĉn(x) = 1 + x

x
Cn(x) for n � 1,

which has been proved in [13, Theorem 8]. It follows from [35, Theorem 4.3.2] that Cn(x) ∈ RZ[−1, 0]. And so Ĉn(x) ∈
RZ[−1, 0]. Therefore, by using Theorem 3 and the Hermite-Biehler theorem, we recover the following result.

Proposition 8 ([13, Theorem 8, Theorem 10]). For any n � 1, one has

Ĉn(x) = Un(x2) + xVn(x2), Vn(x) ≺ Un(x).

5. Flag descent polynomials for hyperoctahedral groups

5.1. Basic definitions

Recall that a descent of π ∈ Sn is an index 1 � i � n −1 such that π(i) > π(i +1). Let des (π) be the number of descents 
of π . The Eulerian polynomials of type A are defined by

An(x) =
∑
π∈Sn

xdes (π).

For σ ∈ S B
n , we define two kinds of descent numbers:
6
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des A(σ ) := #{i ∈ [n − 1] : σ(i) > σ(i + 1)},
des B(σ ) := #{i ∈ [0,n − 1] : σ(i) > σ(i + 1), σ (0) = 0}.

The type B Eulerian polynomials are defined by

Bn(x) =
∑

σ∈SB
n

xdes B (σ ).

Let S B
n = B+

n ∪ B−
n , where B+

n = {σ ∈ S B
n : σ(n) > 0} and B−

n = {σ ∈ S B
n : σ(n) < 0}. The half Eulerian polynomials of type B

are defined by

B+
n (x) =

∑
σ∈B+

n

xdes B (σ ), B−
n (x) =

∑
σ∈B−

n

xdes B (σ ).

Define

B̂n(x) =
n−1∑
k=0

(
n

k

)
Bk(x)(x − 1)n−k−1.

In [21], Hyatt found that

B̂n(x) = B+
n (x), xn B̂n(1/x) = B−

n (x)

for n � 2, which implies that Bn(x) = B̂n(x) + xn B̂n(1/x). Motivated by Hyatt’s work, in the following we shall explore 
Eulerian pairs and Hermite-Biehler pairs associated with the flag descent polynomials for hyperoctahedral group.

Set S B
n = C+

n ∪ C−
n , where C+

n = {σ ∈ S B
n : σ(1) > 0} and C−

n = {σ ∈ S B
n : σ(1) < 0}. We first establish a connection 

between C+
n and B+

n as well as C−
n and B−

n , and then we consider enumerative polynomials over C+
n and C−

n .

Proposition 9. For n � 1, we have∑
σ∈C+

n

xdes B (σ ) =
∑

σ∈B+
n

xdes B (σ ), (13)

∑
σ∈C−

n

xdes B (σ ) =
∑

σ∈B−
n

xdes B (σ ). (14)

Proof. Define

+B+
n = {σ ∈ Bn : σ(1) > 0, σ (n) > 0},

+B−
n = {σ ∈ Bn : σ(1) > 0, σ (n) < 0},

−B+
n = {σ ∈ Bn : σ(1) < 0, σ (n) > 0},

−B−
n = {σ ∈ Bn : σ(1) < 0, σ (n) < 0}.

Note that C+
n = +B+

n ∪ +B−
n and B+

n = +B+
n ∪ −B+

n . A bijection 
 from C+
n to B+

n is given as follows:

(i) If σ ∈ +B+
n , then let 
(σ) = σ ;

(ii) For σ ∈ +B−
n , let k be the smallest index of σ such that σ(k) > 0 and σ(k + 1) < 0. Then we define 
(σ) = σ(k +

1) · · ·σ(n)σ (1) · · ·σ(k).

Note that des B (
(σ )) = des B(σ ). Hence (13) holds. And so (14) holds. �
Following [1], the flag descent number of σ ∈ S B

n is defined by

fdes (σ ) :=
{

2des A(σ ) + 1, if σ(1) < 0;
2des A(σ ), otherwise.

Clearly, fdes (σ ) = des A(σ ) + des B(σ ). The flag descent polynomial is defined by

Sn(x) =
∑

σ∈SB
n

xfdes (σ ).

It follows from [1, Theorem 4.4] that

Sn(x) = (1 + x)n An(x) for n � 0. (15)
7
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5.2. Eulerian pairs and Hermite-Biehler pairs associated with flag descent polynomials

Let neg (σ ) := #{i ∈ [n] : σ(i) < 0}. Consider the q-flag descent polynomials

Sn(x,q) =
∑

σ∈SB
n

xfdes (σ )qneg (σ ).

Then Sn(x) = Sn(x, 1). Define

S E
n (x,q) =

∑
σ∈C+

n

xdes A(σ )qneg (σ ), S O
n (x,q) =

∑
σ∈C−

n

xdes A(σ )qneg (σ ).

It is easy to see that

Sn(x,q) = S E
n (x2,q) + xS O

n (x2,q).

In [11], Brenti introduced the following q-analogue of the type B Eulerian polynomials:

Bn(x,q) =
∑

σ∈SB
n

xdes B (σ )qneg (σ ).

It is clear that Bn(x, 0) = An(x) and Bn(x, 1) = Bn(x). The polynomials Bn(x, q) satisfy the recurrence relation

Bn+1(x,q) = ((1 + q)nx + qx + 1)Bn(x,q) + (1 + q)x(1 − x)
∂

∂x
Bn(x,q),

with B0(x, q) = 1 (see [11, Theorem 3.4]). Note that des B(σ ) = des A(σ ) for σ ∈ C+
n and des B(σ ) = des A(σ ) + 1 for σ ∈ C−

n . 
Hence

Bn(x,q) = S E
n (x,q) + xS O

n (x,q).

We can now conclude the following result

Proposition 10. Let q be a given real number. For any n � 1, we have{
Sn(x,q) = S E

n (x2,q) + xS O
n (x2,q),

Bn(x,q) = S E
n (x,q) + xS O

n (x,q).

Thus the ordered pair of polynomials (Sn(x, q), Bn(x, q)) is a Hermite-Biehler pair.

It follows from [1, Theorem 4.3] that the flag descent polynomials Sn(x) satisfy the recurrence

Sn+1(x) = (2nx2 + x + 1)Sn(x) + x(1 − x2)
d

dx
Sn(x), (16)

with S0(x) = 1. Set αn(x) = 2nx2 + x + 1 and βn(x) = x(1 − x2). Note that βe
n(x) = 0. It follows from (6) that

x(2nx2 + x + 1) = xpn(x2) + rn(x2), 2x2(1 − x2) = qn(x2).

Hence pn(x) = 2nx + 1, qn(x) = 2x(1 − x), rn(x) = x. By Theorem 3, we see that

un(x) = 2nx + 1 + 1 − x = (2n − 1)x + 2, vn(x) = 2x(1 − x), wn(x) = 1.

It is well known that Eulerian polynomials An(x) ∈ RZ(−∞, 0), see [23, p. 544] for instance. It follows from (15) that 
Sn(x) ∈ RZ(−∞, 0). By using Theorem 3 and the Hermite-Biehler theorem, we get the main result of this section.

Theorem 11. For n � 1, let Sn(x) = S E
n (x2) + xS O

n (x2). Then both S O
n (x) and S E

n (x) have only nonpositive zeros, and S O
n (x) ≺ S E

n (x). 
Moreover, the polynomials S E

n (x) and S O
n (x) satisfy the recurrence system{

S E
n+1(x) = (2nx + 1)S E

n (x) + 2x(1 − x) d
dx S E

n (x) + xS O
n (x),

S O
n+1(x) = ((2n − 1)x + 2)S O

n (x) + 2x(1 − x) d
dx S O

n (x) + S E
n (x),

(17)

with S E(x) = S O (x) = 1.
1 1

8
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Define

S E(x, z) = 1 +
∞∑

n=1

S E
n (x)

zn

n! , S O (x, z) =
∞∑

n=1

S O
n (x)

zn

n! .

By rewriting (17) in terms of generating functions, we get{
(1 − 2xz) ∂

∂z S E(x, z) = S E(x, z) + 2x(1 − x) ∂
∂x S E(x, z) + xS O (x, z),

(1 − 2xz) ∂
∂z S O (x, z) = (2 − x)S O (x, z) + 2x(1 − x) ∂

∂x S O (x, z) + S E(x, z).
(18)

It is well known that the exponential generating functions of An(x) and Bn(x) are given as follows (see [11, Theorem 3.4]
for instance):

A(x, z) :=
∞∑

n=0

An(x)
zn

n! = x − 1

x − e(x−1)z
= (1 − x)e(1−x)z

1 − xe(1−x)z
,

B(x, z) :=
∞∑

n=0

Bn(x)
zn

n! = (1 − x)e(1−x)z

1 − xe2(1−x)z
.

It follows from (15) that

S(x, z) :=
∞∑

n=0

Sn(x)
zn

n! = x − 1

x − e(x2−1)z
.

Note that

S(x, z) = S E(x2, z) + xS O (x2, z), S(−x, z) = S E(x2, z) − xS O (x2, z).

Then it is easy to verify that

S E(x2, z) = 1

2
(S(x, z) + S(−x, z)) = x2 − e(x2−1)z

x2 − e2(x2−1)z
,

S O (x2, z) = 1

2x
(S(x, z) − S(−x, z)) = 1 − e(x2−1)z

e2(x2−1)z − x2
.

Therefore, we obtain

S E(x, z) = x − e(x−1)z

x − e2(x−1)z
, S O (x, z) = 1 − e(x−1)z

e2(x−1)z − x
. (19)

Proposition 12. We have

A(x,2z)

A(x, z)
= S E(x, z),

B(x, z)

A(x, z)
= 1 + xS O (x, z).

Proof. Note that

A(x,2z) = x − 1

x − e2(x−1)z
= x − e(x−1)z

x − e2(x−1)z

x − 1

x − e(x−1)z
= S E(x, z)A(x, z),

which yields the first formula. By using (19), we get

1 + xS O (x, z) = e2(x−1)z − xe(x−1)z

e2(x−1)z − x
= 1 − xe(1−x)z

1 − xe2(1−x)z
.

It follows that

B(x, z) = (1 − x)e(1−x)z

1 − xe2(1−x)z
= 1 − xe(1−x)z

1 − xe2(1−x)z

(1 − x)e(1−x)z

1 − xe(1−x)z
=

(
1 + xS O (x, z)

)
A(x, z),

which gives the second formula. This completes the proof. �

9
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Corollary 13. For n � 0, we have

2n An(x) =
n∑

k=0

(
n

k

)
Ak(x)S E

n−k(x),

Bn(x) = An(x) + x
n−1∑
k=0

(
n

k

)
Ak(x)S O

n−k(x).

In recent years, the real-rootedness of the descent polynomials on signed multipermutations has been extensively stud-
ied, see [22,30]. It would be interesting to explore Eulerian pairs and Hermite-Biehler pairs associated with the descent 
polynomials on signed multipermutations.

6. Flag ascent-plateau polynomials for Stirling permutations

6.1. Eulerian pairs and Hermite-Biehler pairs associated with flag ascent-plateau polynomials

Stirling permutations were introduced by Gessel and Stanley [18]. A Stirling permutation of order n is a permutation of 
the multiset {1, 1, 2, 2, . . . , n, n} such that for each i, 1 � i � n, all entries between the two occurrences of i are larger than 
i. The reader is referred to [6,19,27,28] for some recent results on Stirling permutations.

Denote by Qn the set of Stirling permutations of order n. Let σ = σ1σ2 · · ·σ2n ∈Qn . The ascent-plateau number, left ascent-
plateau number and flag ascent-plateau number of σ are respectively defined by

ap (σ ) = #{i ∈ [2,2n − 1] : σi−1 < σi = σi+1},
lap (σ ) = #{i ∈ [2n − 1] : σi−1 < σi = σi+1, σ0 = 0},

fap (σ ) =
{

2ap (σ ) + 1, if σ1 = σ2;

2ap (σ ), otherwise.

Clearly, fap (σ ) = ap (σ ) + lap (σ ). The flag ascent-plateau polynomials are defined by

Ln(x) =
∑

σ∈Qn

xfap (σ ).

They satisfy the recurrence relation

Ln+1(x) = (x + 2nx2)Ln(x) + x(1 − x2)
d

dx
Ln(x), (20)

with the initial condition L0(x) = 1 (see [28, p. 14]). The first few Ln(x) are

L1(x) = x, L2(x) = x + x2 + x3, L3(x) = x + 3x2 + 7x3 + 3x4 + x5.

Set Qn =Q+
n ∪Q−

n , where Q+
n = {σ ∈Qn : σ1 < σ2} and Q−

n = {σ ∈Qn : σ1 = σ2}. Note that

Ln(x) =
∑

σ∈Q+
n

x2ap (σ ) + x
∑

σ∈Q−
n

x2ap (σ ) = LE
n (x2) + xL O

n (x2). (21)

From (20), we see that αn(x) = x + 2nx2, βn(x) = x(1 − x2) and βe
n(x) = 0. Using (6), we obtain x(x + 2nx2) = xpn(x2) +

rn(x2) and 2x2(1 − x2) = qn(x2). Hence

pn(x) = 2nx, qn(x) = 2x(1 − x), rn(x) = x,

un(x) = 2nx + 1 − x = (2n − 1)x + 1, vn(x) = 2x(1 − x), wn(x) = 1.

By using Theorem 3, we get the first main result of this section.

Theorem 14. For n � 1, the polynomials LE
n (x) and L O

n (x) satisfy the recurrence system{
LE

n+1(x) = 2nxLE
n (x) + 2x(1 − x) d

dx LE
n (x) + xL O

n (x),

L O
n+1(x) = ((2n − 1)x + 1)L O

n (x) + 2x(1 − x) d
dx L O

n (x) + LE
n (x),

(22)

with the initial conditions LE(x) = 0 and L O (x) = 1. Thus (LE
n (x), L O

n (x)) is an Eulerian pair.
1 1

10
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The ascent-plateau polynomials and left ascent-plateau polynomials are defined by

Mn(x) =
∑

σ∈Qn

xap (σ ), Nn(x) =
∑

σ∈Qn

xlap (σ ).

Below are the polynomials Mn(x) and Nn(x) for n � 4:

M1(x) = 1, M2(x) = 1 + 2x, M3(x) = 1 + 10x + 4x2, M4(x) = 1 + 36x + 60x2 + 8x3;
N1(x) = x, N2(x) = 2x + x2, N3(x) = 4x + 10x2 + x3, N4(x) = 8x + 60x2 + 36x3 + x4.

It is well known that (see [27, p. 2] for instance):

M(x, t) =
∑
n�0

Mn(x)
zn

n! =
√

x − 1

x − e2z(x−1)
,

N(x, t) =
∑
n�0

Nn(x)
zn

n! =
√

1 − x

1 − xe2z(1−x)
.

According to [26, Theorem 2, Theorem 3], we have

Mn(x) = xn Nn

(
1

x

)
, deg Nn(x) = 1 + deg Mn(x). (23)

By definition, we see that

Mn(x) = LE
n (x) + L O

n (x), Nn(x) = LE
n (x) + xL O

n (x). (24)

We can now conclude the following result.

Proposition 15. For any n � 1, we have{
Ln(x) = LE

n (x2) + xL O
n (x2),

Nn(x) = LE
n (x) + xL O

n (x).

Thus the ordered pair of polynomials (Ln(x), Nn(x)) is a Hermite-Biehler pair.

6.2. Alternatingly increasing property

Let f (x) = ∑n
i=0 f i xi be a polynomial with real coefficients. We say that f (x) is unimodal if there exists an index m

such that f0 � f1 � · · · � fm � fm+1 � · · · � fn . Such an index m is called a mode of f (x). We say that f (x) is symmetric if 
f i = fn−i for all 0 � i � �n/2�. If f (x) is symmetric, then it can be expanded uniquely as

f (x) =
�n/2�∑
k=0

γkxk(1 + x)n−2k,

and it is said to be γ -positive if γk � 0 for all 0 � k � �n/2� (see [15, Section 2]). It is well known that γ -positivity implies 
unimodality, see [2] for instance. Following [31, Definition 2.9], we say that f (x) is alternatingly increasing if

f0 � fn � f1 � fn−1 � · · · � f� n+1
2 �.

Alternatingly increasing property is a stronger property than unimodality. Recently, there has been much work on the 
alternatingly increasing property of Ehrhart polynomials (see [5,10,32]).

According to [27, Proposition 1], we have

2nxAn(x) =
n∑

i=0

(
n

i

)
Ni(x)Nn−i(x), Bn(x) =

n∑
i=0

(
n

i

)
Ni(x)Mn−i(x).

It is well known that An(x) and Bn(x) are both unimodal (see [2] for instance). Motivated by the above convolution formulas, 
it is natural to explore the unimodality of Mn(x) and Nn(x).

We now recall a very recent result on the flag ascent-plateau polynomials.
11
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Proposition 16 ([28, Theorem 19]). The flag ascent-plateau polynomial Ln(x) is semi-γ -positive. More precisely, for n � 1, we have

Ln(x) =
n∑

k=0

Ln,kxk(1 + x2)n−k,

where the numbers Ln,k satisfy the recurrence relation

Ln+1,k = kLn,k + Ln,k−1 + 4(n − k + 2)Ln,k−2, (25)

with the initial conditions L0,0 = L1,1 = 1, L0,k = 0 for k �= 0 and L1,k = 0 for k �= 1.

Since deg Ln(x) = 2n − 1, we have deg LE
n (x) = deg L O

n (x) = n − 1. Note that LE
n (0) = 0 and L O

n (0) = 1. By using Proposi-
tion 16, we get that both LE

n (x) and L O
n (x) are γ -positive for any n � 1. More precisely, we have⎧⎨⎩ LE

n (x) = ∑
σ∈Q+

n
xap (σ ) = ∑�n/2�

k=1 Ln,2kxk(1 + x)n−2k,

L O
n (x) = ∑

σ∈Q−
n

xap (σ ) = ∑�(n−1)/2�
k=0 Ln,2k+1xk(1 + x)n−1−2k.

(26)

In conclusion, we present the second main result of this section.

Theorem 17. For any n � 1, both the ascent-plateau polynomial Mn(x) and the left ascent-plateau polynomial Nn(x) are alternatingly 
increasing.

Proof. It follows from (26) that both LE
n (x) and L O

n (x) are symmetric and unimodal. When n = 2m + 1, assume that

LE
2m+1(x) = �1x + �2x2 + · · · + �m−1xm−1 + �mxm + �mxm+1 + �m−1xm+2 + · · ·�2x2m−1 + �1x2m,

L O
2m+1(x) = 1 + �̃1x + �̃2x2 + · · · + �̃m−1xm−1 + �̃mxm + �̃m−1xm+1 + · · · + �̃1x2m−1 + x2m.

Then M2m+1(x) = LE
2m+1(x) + L O

2m+1(x) = ∑2m
i=0 M2m+1,i xi , where

M2m+1,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if i = 0;

�i + �̃i, if 1 � i � m;

�2m−i+1 + �̃2m−i, if m + 1 � i � 2m − 1;

�1 + 1, if i = 2m.

It is clear that 1 � �1 + 1 � �1 + �̃1 � �2 + �̃1 � · · · � �m + �̃m , i.e.,

M2m+1,0 � M2m+1,2m � M2m+1,1 � M2m+1,2m−1 � · · ·� M2m+1,m.

Thus M2m+1(x) is alternatingly increasing. From (23), we see that

N2m+1(x) = x2m+1M2m+1

(
1

x

)
,

which yields that N2m+1(x) is also alternatingly increasing. In the same way, one can verify that both M2m(x) and N2m(x)
are alternatingly increasing. This completes the proof. �
6.3. Interlacing property of the ascent-plateau and left ascent-plateau polynomials

In [34], Yang and Zhang studied the real-rootedness of Eulerian polynomials via the Hermite-Biehler Theorem. Along the 
same lines, we shall establish the interlacing property of Mn(x) and Nn(x). Let Cm[x] denote the set of polynomials over 
C with degree less than or equal to m. In [7–9], Borcea and Brändén obtained several characterizations of linear operators 
preserving weakly Hurwitz stability. The following characterization will be used in our discussion.

Theorem 18 ([9, Theorem 3.3]). Let T :Cm[x] →C[x] be a linear operator, where m is a nonnegative integer. Then T preserves weak 
Hurwitz stability if and only if either

(i) T has range of dimension at most 1 and is of the form T ( f ) = α( f )P , where α is a linear functional on Cm[x] and P is a weakly 
Hurwitz stable polynomial, or
12
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(ii) The polynomial

T
[
(1 + xy)m] =

m∑
i=0

(
m

i

)
T (xi)yi (27)

is weakly Hurwitz stable in two variables x, y.

The polynomial in (27) is called the algebraic symbol of T with respect to the circular domains under consideration. 
Combining (21) and (24), we get that

xMn(x2) + Nn(x2) = (1 + x)Ln(x). (28)

Let ̂Ln(x) = (1 + x)Ln(x). By using (20), it is easy to verify that for n � 0, one has

L̂n+1(x) = (2n + 1)x2̂Ln(x) + x(1 − x2)
d

dx
L̂n(x), (29)

with ̂L0(x) = 1 + x. The recurrence (29) could be restated as ̂Ln+1(x) = T
(̂
Ln(x)

)
, where

T = (2n + 1)x2 + x(1 − x2)
d

dx
.

Note that deg L̂n(x) = 2n for n � 1. It is easy to see that T is a linear operator acting on C2n[x]. The algebraic symbol of T
is given by

T
[
(1 + xy)2n

]
= (2n + 1)x2(1 + xy)2n + x(1 − x2)

2n∑
i=1

(
2n

i

)
ixi−1 yi

= (2n + 1)x2(1 + xy)2n + 2nx(1 − x2)y(1 + xy)2n−1

= x(1 + xy)2n−1 (x(1 + xy) + 2n(x + y))

= x(1 + xy)2n
(

x + 2n
x + y

1 + xy

)
.

If Re x > 0 and Re y > 0, then it is clear that 1 + xy �= 0. Hence 1 + xy is weakly Hurwitz stable in variables x, y. Let 
x = a + bi, y = c + di, where a, b, c, d ∈R and i = √−1. Note that

x + y

1 + xy
= a + c + (b + d)i

1 + ac − bd + (ad + bc)i

1 + ac − bd − (ad + bc)i

1 + ac − bd − (ad + bc)i

= a + c + a2c + b2c + ac2 + ad2 + (b − bc2 + d − a2d − b2d − bd2)i

(1 + ac − bd)2 + (ad + bc)2
.

If Re x = a > 0 and Re y = c > 0, then we have

Re
x + y

1 + xy
= a + c + a2c + b2c + ac2 + ad2

(1 + ac − bd)2 + (ad + bc)2
= (a + c)(1 + ac) + b2c + ad2

(1 + ac − bd)2 + (ad + bc)2
> 0,

and so we have

Re

(
x + 2n

x + y

1 + xy

)
> 0.

Therefore, T
[
(1 + xy)2n

]
is weakly Hurwitz stable in variables x, y. By using Theorem 18, we see that the operator T

preserves weakly Hurwitz stability. By induction, we get that ̂Ln(x) is weakly Hurwitz stable. Therefore, combining (28) and 
the Hermite-Biehler theorem, we get the following result.

Theorem 19. For any n � 1, both the ascent-plateau polynomial Mn(x) and the left ascent-plateau polynomial Nn(x) have only real 
nonpositive zeros and Mn(x) ≺int Nn(x).

Since ̂Ln(x) is weakly Hurwitz stable, the polynomial Ln(x) is also weakly Hurwitz stable. It follows from (21) that both 
L O

n (x) and LE
n (x) have only real nonpositive zeros and L O

n (x) ≺ LE
n (x) for any n � 1.
13
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7. Concluding remark

In this paper, we consider the combinatorial aspects of Eulerian pairs and Hermite-Biehler pairs. Let { fn(x)}n�0 be a 
sequence of polynomials with nonnegative coefficients. Suppose that

fn+1(x) =
(

a1n + a2 + (b1n + b2)x + (c1n + c2)x2
)

fn(x) + dx(1 − x2)
d

dx
fn(x), (30)

where a1, a2, b1, b2, c1, c2, d ∈R. Then

αn(x) = a1n + a2 + (b1n + b2)x + (c1n + c2)x2, βn(x) = dx(1 − x2).

It follows from (6) that

pn(x) = a1n + a2 + (c1n + c2)x, qn(x) = 2dx(1 − x), rn(x) = (b1n + b2)x.

By using Theorem 3, we obtain

un(x) = a1n + a2 + d + (c1n + c2 − d)x, vn(x) = 2dx(1 − x), wn(x) = b1n + b2,

and then we can derive the recurrence system of the polynomials f E
n (x) and f O

n (x).
Besides the polynomials discussed in this paper, many other enumerative polynomials also satisfy the recurrence (30), 

see [4,36,37] for instance. We end this paper by giving an example. Following [3, Definition 1], a tree-like tableau is a Ferrers 
diagram where each cell contains either 0 or 1 point with some constraints. The symmetric tableaux are tree-like tableaux 
which are invariant with respect to reflection through the main diagonal of their diagram. Let b(n, k) be the number of 
symmetric tableaux of size 2n + 1 with k diagonal cells, and let bn(x) = ∑n+1

k=1 b(n, k)xk . It follows from [3, Proposition 18]
that

bn+1(x) = (n + 1)x(1 + x)bn(x) + x(1 − x2)
d

dx
bn(x),

with the initial condition b0(x) = x. By using the recurrence system of the polynomials bE
n (x) and bO

n (x), one can easily 
derive that bE

n (1) = bO
n (1) = 2n−1n! for n � 1. We leave the details to the reader. It may be interesting to explore properties 

of bE
n (x) and bO

n (x).
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